Small Business Innovation Research/Small Business Tech Transfer

A Rapid Aeroelastic/Aeroservoelastic Modeling, Analysis and Optimization System for Advanced Flight Vehicles, Phase I

Completed Technology Project (2006 - 2007)

Project Introduction

Stirling Dynamics Inc and the University of Washington propose to develop a MATLAB toolbox for rapid aeroelastic (AE) and aeroservoelastic (ASE) modeling, analysis and optimization of flight vehicles. In practically all current aeroelastic analysis/optimization codes, model generation takes a considerable amount of effort, as does the processing of results. The proposed AE/ASE toolbox will provide user-friendly, mostly GUI-driven capabilities for rapid preand post-processing that will considerably decrease model generation effort and analysis/sensitivity cycle time compared to currently available tools. ASE toolbox users will have access to customizable databases containing organizational knowledge and standards for flight vehicle material properties, construction details, actuator/sensor models, airfoil shapes, etc. Model construction will be fully automated, eliminating time-consuming manual preprocessing. A full-range of ASE analyses and design sensitivities will be available within the MATLAB/Simulink environment. Utilities will be developed for importing and exporting computational model data (FEM, CFD, DLM, etc.) and results to and from the major commercial analysis codes. Key innovations include: 1) rapid model development, analysis, and optimization; 2) integration with the widespread and highly accessible MATLAB/Simulink computational environment; and 3) connectivity from MATLAB to more general purpose codes such as NASTRAN for higher fidelity follow-on analyses and model refinement.

Primary U.S. Work Locations and Key Partners

A Rapid Aeroelastic/Aeroservoelastic Modeling, Analysis and Optimization System for Advanced Flight Vehicles, Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	2
Project Management	
Technology Areas	2

Small Business Innovation Research/Small Business Tech Transfer

A Rapid Aeroelastic/Aeroservoelastic Modeling, Analysis and Optimization System for Advanced Flight Vehicles, Phase I

Completed Technology Project (2006 - 2007)

Organizations Performing Work	Role	Туре	Location
Armstrong Flight Research Center(AFRC)	Lead Organization	NASA Center	Edwards, California
Stirling Dynamics, Inc.	Supporting Organization	Industry	Kirkland, Washington

Primary U.S. Work Locations	
California	Washington

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Armstrong Flight Research Center (AFRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

TX15 Flight Vehicle Systems
 TX15.1 Aerosciences
 TX15.1.3 Aeroelasticity

